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Equations of motion in linearised gravity: charged rotating 
sources 

G M O’Brient 
School of Theoretical Physics, Dublin Institute for Advanced Studies, 10 Burlington Road, 
Dublin 4. Ireland 

Received 17 April 1979, in final form 19 October 1979 

Abstract. We consider the linearised gravitational and electromagnetic fields of an axially 
symmetric charged source which is rotating about its symmetry axis and moving with 
arbitrary acceleration along its symmetry axis when viewed in the flat background space- 
time. We establish that if the linearised field of the body and the linearised twist of the 
degenerate principal null direction of the Weyl tensor are ‘wire’ singularity-free, then the 
body must either move with zero acceleration or perform runaway motion from an 
unaccelerated state in the infinite past, and its mass and charge are constant at lowest order. 
Also, its rotation is either uniform or singular in the infinite past. 

1. Introduction 

In two recent papers, Hogan and O’Brien (1979) and O’Brien (1979) (hereinafter 
referred to as I and 11, respectively), the Robinson and Robinson (1969) linearised fields 
of rotating sources, moving with arbitrary acceleration in a background Minkowskian 
space-time, were studied. The sources considered were of small mass, axially sym- 
metric, rotating slowly about the symmetry axis and moving along the symmetry axis 
when viewed in the background space-time. The approach used was one developed by 
Hogan and Imaeda (1979a, b, c) to study the motion of point sources of Robinson- 
Trautman (1962) fields. In I and I1 it was established that if the linearised field of the 
body and the linearised twist of the degenerate principal null direction of the Riemann 
tensor are ‘directional’ singularity-free, then the body must move with uniform 
acceleration and, to first order, its mass must be constant and its rotation uniform. 

Robinson et af (1969) extended the Robinson and Robinson (1969) work to a 
situation in which there is a source-free electromagnetic field. They presented a family 
of algebraically special vacuum Einstein-Maxwell line elements with a twisting, diver- 
ging, degenerate principal null direction which is also a principal null direction of the 
electromagnetic field. Their solutions include as special cases the Robinson-Trautman 
(1962) family of line elements and the Newman et a1 (1965) line element for a charged, 
rotating, non-accelerating, axially symmetric body. In analogy with the interpretation 
given in I and I1 of the Robinson-Robinson (1969) fields, we think of the Robinson et af 
(1969) fields as including the fields of arbitrarily moving, rotating, charged bodies. The 
purpose of the present paper is to examine a member of the Robinson et a1 (1969) 
family of line elements with this interpretation in mind. 

t Present address: Department of Physics and Astronomy, Louisiana State University, Baton Rouge, 
Louisiana 70803, USA. 
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1748 G M O'Brien 

In § 2 we introduce the exact Robinson et a1 (1969) solution of the Einstein- 
Maxwell vacuum field equations. In § 3 the background Minkowskian space-time is 
briefly discussed and the linearisation procedure explained. In § 4 we solve the 
linearised field equations, determining functions of integration by the requirement that 
the linearised field of the body be 'wire' singularity-free. In 0 5 we present the final form 
of the line element arid discuss our results. 

2. The Robinson et ~1 line element 

We consider a space-time which admits a null vector field k '  ( i  = 1 , 2 , 3 , 4 )  tangent to a 
shear-free diverging congruence of affinely parametriscd null geodesic curves. Robin- 
son and Robinson (1969) have shown that coordinates x' = ( f ;  8 (+, p )  may be chosen 
such that the line element built around the congruence has the form 

d s 2 = 2 P p d l d c + 2 d C ( d p + Z  d l + Z  df+§dX) (2.1u) 

d Z =  -(dLa+i dR dL--i ZB dc) = k, dx' (2.16) 

where B = R(5, a)> 
df = df/a{ and $= d f / d c  Assuming that k' is a principal null direction of the elec- 
tromagnetic field it follows that in  these coordinates Fa6 has the form 

a) ,  a bar denotes complex conjugation and for anyfunctionf(l, 

- 
V V 
P -  P Fab =- kiunzbi+-=k[,Pn61+(0+ Q ) k [ , l b ! + ( Q -  0 ) m ~ ~ & , j  (2.2) 

where V and Q are arbitrary functions o€ the four coordinates and 

m, dx' = P d( 1, dx'  = dp +Z d l + Z  d l +  S dX (2.3) 
Robinson et a1 (1969) have shown that the Einstein-Maxwell vacuum field equa- 

P -- e " ( p  + i ~ )  U = u ( l ,  a )  ( 2 . 4 ~ )  

Z = PA-i(D f A)R (2.4b) 

a-= - ~ e - " ~ ~ ~ + D  3 ) ~  ( 2 . 4 ~ )  

A = -i (2,4d) 

tions and Maxwell's equations are satisfied provided 

(2.4e) 

( D  + 2A)q = 0 

( D  t ;i)v - (e2"q)' = 0 
G 4 g )  

(2.4h) 

§=--pi - ~ K + ( p m + R n M - ~ q ~ ) / ( p 2 + R ' ) - '  (2.4i) 

K =e-2"(DL+DL) (2.41) 

L=A-Du (2.4k) 

M = K R -t $ e-'" { ( D  + L\, ( D  + A) -t ( D  + A) (D + A)}sZ (2.41) 
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(2.4m) 

(2.4n) 

(2.40) 

where q, U and m are functions of 5, c a only and for any function f(5, a)  we use the 
notation Of= df--i aBf and Df = 3f + i  aBf with a dot denoting partial differentiation 
with respect to a. 

3. Linearisation 

We proceed as in I and 11 and expand the exact line element (2.1) about a background 
Minkowskian space-time. We begin with the Minkowskian line element which is given 
explicitly by 

ds; = 2p2 exp(2u) d l  dr--  2 dp d a  - (1 + 2Lip) d a 2  (3.1) 
0 0 

where 

2 5  z r  
0 J 2  J 2  exp(- u) = A ‘( 1 -t i lr)-A ’( 1 - f lf) - (A - ih ) - - (A  + ih ) - - 1 

= ( A 1 ) 2 + ( A 2 ) 2 + ( A 3 ) 2 - ( A 4 ) 2  (3.2) 

U =  p‘k, .  
0 

From (3.1) we deduce that p = 0 is a time-like world line along which CT is the proper 
time. The A ‘  and w‘ are functions of m only and are its 4-velocity and 4-acceleration, 
respectively. For a detailed derivation of (3.1) and (3.2) the reader is referred to Hogan 
and Imaeda (1979a). 

We assume that the function m which appears in the metric (2.1) through (2.4i) is 
small of first order, writing m = 0,. We take m to be the mass of the source plus a 
term of electromagnetic origin the form of which is to be determined by (2.4). The 
function qij in (2.4i) is interpreted as the square of the charge of the source. An 
expansion €or U and B of the form 

u = u + u  ( 3 . 3 ~ )  
0 1  

B=f+$3 (3.36) 

i s  assumed, where a subscript n ( n  = 0, a, 1, . . ,) under any quantity means that it is 
small of nth order. Substituting these into (2.4c), (2.4d), (2.4j) and (2.4k) and using 
(3.2) we have 

K = l + $  (3.4a) 

r;z= -- :AB+r;z (3.4b) 

where A-2exp(-2:)dz/aldZ It is assumed that the subscript zero refers to the 

1 2  
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Minkowskian values of the various quantities. Substitution of the above expression into 
(2.41) now yields 

M = $A(R- B) + 0 2  = 01. (3.5) 
1 1  

We consider now the orders of magnitude of the electromagnetic quantities q and v. 
From ( 2 . 4 ~ )  it follows that @ = O1 (since m = O1 and using (3.5)). Also the zeroth- 
order term in the left-hand side of (2.4n) vanishes so that vi? = O1. It follows therefore 
that v = Olj2 and q = 01/2 and an expansion for these of the form 

q = q + q  ( 3 . 6 ~ )  
112 3/2 

? J =  ? J +  
1/2 3/2 

(3.6b) 

is assumed. 

4. The charged source 

We shall assume that the source is axially symmetric with the X 3  axis as symmetry axis 
and that it moves along this axis, i.e. A '  = A 2 =  0. Then if a = a((+) is defined by 
em = A3+A4, (3.2) becomes 

exp(-U) = e"( i l l+e-2")  ( 4 . 1 ~ )  
0 

(4.16) 

and & = ( p i ~ i ) 1 ' 2  is the magnitude of the 4-acceleration of the source. We guarantee 
the axial symmetry of the source by requiring that the vector i ( t8 -B)  should satisfy 
Killing's equations. Clearly a sufficient condition for this is that the functions m, U, B 
and qq, which appear in (2.11, depend on l and fonly in the combination &. We assume 
also that both q and 4 are axially symmetric. 

Following the approach used in considering an uncharged source in I and 11, we 
choose R = B ,  with a view to the recovery of the linearised Newman et a1 (1965) 
solution as a special case. We require that R be 'wire' singularity-free thereby ensuring 
that the linearised twist of the vector field (2.lb) is also 'wire' singularity-free, This 
leads us to choose as solution to (3.4b) 

1 1  

R = c((+)( (4.2) 

where c = O1 and we have introduced the new variable 

In order that (2.4g), (2.4h) and ( 2 . 4 ~ )  be satisfied at lowest order we must take 

q = E ( ( + )  = ij (4.4u) 

1 
5 

v =-{it+ &e( 1 - t2) + z ( a ) )  (4.4b) 
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where z = OlI2 is a function of integration and & and E are the mass and charge of the 
source, respectively, at lowest order. In the special case of a = 0 and m, c and E each 
having constant values (and U = 0 = B), the line element (2.1) becomes the Newman eta1 

(1965) solution. In general, we interpret (2.1) (with the above restrictions) as the line 
element associated with a slowly rotating, arbitrarily accelerating, axially symmetric 
source, rotating non-uniformly about and moving along its symmetry axis when viewed 
in the flat background space-time. 

In the Newman and Penrose (1966) notation, the tetrad components of the Maxwell 
tensor and the linearised Weyl tensor are given respectively by 

1 2 

@ o = O  
-4 Q1 = -- 

2( p - in)’ 

and 

(4.5a) 

(4.5b) 

(4.5c) 

( 4 . 6 ~ )  

(4.6b) 

( 4 . 6 ~ )  

All of these tetrad components which are non-zero are singular on p = 0, 0 = 0-the 
analogue of the ‘Kerr circle’. 

Using (2,4j), (2.4n), (2 .40)~ (4.1) and (4.2) we have 

K = - A u - 2 ~ + 0 2  (4.7a) 

(4.7b) 

Requiring that (4.5) and (4.6) be free of ‘wire’ singularities, we solve (4.76) for Kwith U, 
v and m given by (4.1 b), (4.46) and ( 4 . 4 ~ )  then ( 4 . 7 ~ )  for Thus the line element (2.1) 
is fully determined with an O2 error. 

We find that equations (4.7) are satisfied and (4.5) and (4.6) are ‘wire’ singularity- 
free at lowest order provided the function z which appears in (4.4b) and ( 4 . 4 ~ )  vanishes 
and 61, E and 3ci&--2e2ci are constants. When EZO, 15, the magnitude of the 
4-acceleration of the source, must be of the form 

1 1 1  

sAK= 1 ni+3mLi+~exp(-2;)vB+O2. 
1 0 

0 

ci = a + b exp(3kc/2e2) (4.8) 
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with a and b constant. When E = 0, the acceleration must be uniform. This case has 
been treated in detail in I and 11. Also, we have that 

K= 6 h u 5  + R ( v )  + 0 2  (4%) 
1 

(4.9b) 

with 8 constant. 
We now solve (2.4g) and (2.4h) for q and v respectively, determining the 

functions of integration by requiring that the tetrad components (4.5) be ‘wire’ 
singularity-free. This also establishes that the constants S in (4.9b) and a in (4.8) vanish 
so that the acceleration is given by 

ci = b exp(3fiu/2E2). (4.10) 

Thus the requirement that the linearised field of the body be ‘wire’ singularity-free 
implies that either the body performs runaway motion from a state of zero acceleratiori 
in the infinite past or its acceleration vanishes. Because of the singularity in a in the 
infinite future and the corresponding breakdown of the perturbation, we must confine 
our study to the future-bounded time interval --u3<(r < uo for some small 

Having calculated q and v we can now evaluate the lowest-order non-vanishing 

ternis in M from ( 2 . 4 ~ ) .  Then substituting in (2.41) and integrating yields an 
expression for Sr which 1s singular on 5 = *I unless c + (3&/2e2)C = 0. At th2 outset 

we specified that R and thus the linearised twist of the vector field (2.1 b)  be free of ‘wire’ 
singularities, and therefore the rotation parameter c must be of the form 

c = c ’ - t - ~ ~ ’ e x p ( - - 3 ~ ~ / 2 ~ ~ )  (4.11) 

where c’ and c” are constants. If c ” i  0. the second term in (4.11) i s  singulax in the 
infinite past and vanishes in the Infinite future. It follows from (4.10) and (4.1 1) that, in 
general, the source has infinite rotaticnal and zero translational energy in the limit 
(T+--co and finite rotational and infinite translational energy in the limit u-too. If c ” =  0, 
the rotation is always uniform and the approximation is valid throughout the future- 
bounded time interval -a <: CT < U(, for some small mo > 0. In this case, since Oi + 0 as 
u+--cc;, we recover thc linearised Newman et a l (1965)  solution in the infinite past, 
When ~ ” f  0 the approximation breaks down in the limits CT .+ ---CO and a+m and we 
must confine cur study to a small interval centred about the origin, i.e. ---gl < U  < u1 for 
some small U :  > I), 

The lowest-order non-zero tetrad components of the linearised Weyl and Maxwell 
tensors are given respectively by 

3 / 2  3 / 2  

> 0.  

3 / 2  312 

2 



Equations of motion in iiizearised gravity 1753 

(4.13) 

These are only singular on p = 0, 0-1 0. The linearised Weyl tensor is Petrov type 11. 
The first-order functions R ( a )  and ?(U)  remain undetermined. However, these do not 
appear in (4.12) and (4.13) and, as Hogan and Imaeda (1979a,b) show, they can be 
removed by a gauge transformation 

K-, K-  R ( U )  

U-, U + ij? ( U )  - , T ( U ) [ .  

1 1  

1 1  

(4.14) 

We apply (4.14) to (4.9). 

5. Discussion 

Starting with a line clement belonging to the Robinson et a1 (1969) family, which is 
interpreted as describing the exterior field of an axially symmetric charged source, 
rotating slowly about its symmetry axis and moving with arbitrary acceleration along its 
symmetry axis, we have shown that if the linearised field of the body and the linearised 
twist of the degenerate principal null direction of the Weyl tensor are free from 6wire’ 
singularities then either the body performs runaway motion from an unaccelerated state 
in the infinite past or its acceleration vanishes and, to first order, its mass and charge are 
constant. Its rotation is either uniform or singular in the infinite past and uniform in the 
infinite future. 

The final form of the linearised line element is given by (2 . la )  with 

(5.1) 

where e, a and c are given by (4.3), (4.10) and (4.11) and 61 and c are constant. If c ”  f 0 
in (4.1 l ) ,  we note that -v1 < D < o1 so that the siiigularities in c and ZU, at past and future 
infinity respectively, are not allowed to deveiop. Whsn c” = 0, -CO < U < go, and as 
U -+ --CO we recover the Newman et a1 (1965) solution. If in addition we put c f  = 0, we 
obtain the Reissner-Nordstrom solution for a static charge. 
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